

l'avenir DU FINANCEMENT des infrastructures de transport

22 fév. 2022 - Maison de la Chimie - Paris

Yvano CHRISTIAN Energie

ECOROAD

• Yann SOBGUI Energie

 Benjamin TURPIN Urbanisme

Source : Ministry for ecological and inclusive transition (MTES)

2 Our system

1 - Surface course

→ Porous pavement

2 - Base course

→ Plastic road

3 - Energy production → Pico turbine

3 Surface course porous pavement

Technical specification

- → 30% of voids
- → Strength of the concrete
- → Additional material: superplasticizer, steel fibre
- → Strong capacity to absorb water

3 Advantages

• Environmental benefits eco friendly

• Sound Absorption

• Light reflectivity

3 Plastic road

Plastic road in figures:

- \rightarrow 300L water berging (per m²)
- → 72% maximale C02 reduction
- → 43 kg weight

Source: EarthDECKS plastic road

4 Water storage

S.A.U.L. : Structure Alvéolaire Ultra Légère = Ultra Lightweight Honeycomb Structure

Made of high density polymers (Polypropylene or Polyethylene or Polyvinyl Chloride)

Vacuum rate greater than 90%

Possibility of variable hydraulic conductivity

4 Picoturbine

Picoturbine PICOGEN electrical potential averaging 2 x 200W

Most effective turbine for implementation in road structures

Source : www.save-innovations.com/picogeneratrice/

4 Energy production for a year

Cities	Total rainy days	Electrical production per SAUL
Pau	123 days	1180,8 kWh
Brest	120 days	1152 kWh
Besançon	115 days	1104 kWh
Paris	99 days	950,4 kWh

source : climate-data.org

Case study in Paris

- → Bicycle path today : +1000 km
- → Bicycle path goal in 2026 : 1520 km
- → Bicycle path to come : +520 km

Hypothesis :

- → 1 SAUL per 200 m
- → With + 520km Paris could produce 2,47 GWh from rains

5 Finally

Benefits:

- → 0 Raw material extraction
- → Low carbon emission
- → Cheaper than a classic road
- → Good resistance

6 Potential in france and abroad

Source : MTES Gaspar database 2019

Thank you for listening

